On subgrid multiscale stabilized finite element method for advection-diffusion-reaction equation with variable coefficients

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multiscale/stabilized finite element method for the advection–diffusion equation

This paper presents a multiscale method that yields a stabilized finite element formulation for the advection–diffusion equation. The multiscale method arises from a decomposition of the scalar field into coarse (resolved) scale and fine (unresolved) scale. The resulting stabilized formulation possesses superior properties like that of the SUPG and the GLS methods. A significant feature of the ...

متن کامل

Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients

In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...

متن کامل

Analysis of an Interface Stabilized Finite Element Method: The Advection-Diffusion-Reaction Equation

Analysis of an interface stabilised finite element method for the scalar advectiondiffusion-reaction equation is presented. The method inherits attractive properties of both continuous and discontinuous Galerkin methods, namely the same number of global degrees of freedom as a continuous Galerkin method on a given mesh and the stability properties of discontinuous Galerkin methods for advection...

متن کامل

A Variational Multiscale Stabilized Finite Element Method for Stochastic Advection-Diffusion and Stochastic Incompress- ible Flow

An extension of the deterministic variational multiscale (VMS) approach with algebraic subgrid scale (SGS) modeling is considered for developing stabilized finite element formulations for the linear stochastic scalar advection-diffusion equation and the incompressible stochastic Navier-Stokes equations. The stabilized formulations are numerically implemented using the spectral stochastic formul...

متن کامل

A stabilized mixed finite element method for the first-order form of advection-diffusion equation

This paper presents a stabilized mixed finite element method for the first-order form of advection–diffusion equation. The new method is based on an additive split of the flux-field into coarseand fine-scale components that systematically lead to coarse and fine-scale variational formulations. Solution of the fine-scale variational problem is mathematically embedded in the coarse-scale problem ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Numerical Mathematics

سال: 2020

ISSN: 0168-9274

DOI: 10.1016/j.apnum.2019.10.021